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ABSTRACT 

We derive, by using a spectral representation in momentum 

transfer, t , an integral equation, similar in structure to a multipheral 

equation, with continued cross channel unitarity, for the absorptive part 

for a composite particle scattering amplitude from a Bethe-Salpeter 

equation describing composite particle scattering in the s channel. 

At high energy in the t channel, the equation becomes homogeneous and 

has a Reggeized solution. We indicate how this equation may be solved 

using determine&al techniques. We also show how the composite 

particle amplitude resulting from the original equation may be used to 

construct production and three body amplitudes. We also infer the 

possibility of studying, using the amplitude from the cross channel 

problem, the effect of extra unitarity on Reggeon-Reggeon-particle 

vertices. 
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I. INTRODUCTION 

In recent years there has been much interest in ways of looking 

at multiparticle production phenomena and in models which attempt to 

set forth the basic dynamical mechanisms which give rise to such 

production. With regard to these considerations, many physicists 

have come to study what are known as inclusive reactions. These are 

reactions of the form 

a+b-c +c +“‘+c +X , 
1 2 k 

where X denotes an unknown system of particles. Experimentally 

this process is realized by having a detection apparatus measure the 

momenta and types of particles cf to ck , i. e., the distribution of 

one (or more) final particles is analyzed, all other particles being 

summed over. 

The main pieces of information are single particle spectra, e. g., 

the momentum spectrum of the ir+ produced in p-p collisions. What 

is measured is 

3 da - 

d3p n, 

in the laboratory frame, p being the momentum of the observed 

particle. From this,an invariant distribution function is defined, 
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E d3cr 
- q f(p;s) . 
d3t ... 
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This invariant function was shown by Mueller [ 11 to be the missing 

mass (mass of the undetected particles) discontinuity of a three-to-three 

(six point) amplitude for forward scattering in analogy with the connection 

between the total cross section for a given process and the discontinuity 

in total energy of the elastic two body amplitude for the process. This 

is illustrated in Figs. 1 and 2. 

If we wish to construct a model for a single particle inclusive 

distribution for a particular final state particle and compare the 

predictions of this model with experiment, we have two choices. First, 

we can try to calculate directly the single particle invariant function 

within the context of some model, or we can construct a model for a 

three-to-three scattering process, and using Mueller’s Optical Theorem, 

construct the relevant single particle distribution. In addition, it is of 

interest to study high energy production amplitudes directly, i.e., 

two particles scattering into more than two particles (exclusively). 

This paper will be concerned with the latter approach to single 

particle inclusive distributions as well as with the construction of a 

high energy production amplitude. We construct what we call a 

“multiperipheral” equation with continued cross channel unitarity 
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which describes the scattering of two elementary particles into two 

composite particles, from an equation which in the cross channel 

(s channel) describes composite particle scattering. This equation 

will yield for us a high energy amplitude for the production of two 

composites. 

If, in the composite particle problem, there is a mechanism 

for the formation of the composite in the initial state and the decay 

of the composite in the final state, then we can construct from the 

composite particle amplitude an amplitude describing three-to-three 

scattering. We have such a mechanism in the form of composite particle 

propagators and vertex functions for the decay and formation of a 

composite particle from two elementary particles (Fig. 3). 

From the “multiperipheral” equation for the amplitude describing 

composite particle production, if we attach the appropriate vertex 

functions and propagators, we can construct an amplitude for the 

production of four particles. If we Reggeize the composite, we 

can construct an amplitude for two particles scattering into two 

Reggeons. 
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The organization of fhe paper is as follows: In Sec. II we discuss 

the derivation of equations describing composite-particle scattering, as 

was done by Freedman, Lovelace and Namyslowski [ 21 and by Aaron, 

Amado and Young [ 31 . Sec. III treats the formulation of our 

“multiperipheral” equation and the extraction of Regge behavior via a 

continuation of the Freedman, Lovelace, Namyslowski and Aaron, 

Amado, Young results to the cross channel by using a spectral 

representation in momentum transfer for the composite particle 

amplitude. Section IV presents an alternative derivation of the 

“multiperipheral” equation in terms of invariant variables. Section V 

is a discussion of our results. 

II. COMPOSITE-PARTICLE SCATTERING WITH 
TWO BODY AND THREE BODY UNITARITY 

Beginning with the Bethe-Salpeter equation for the three particle 

Green’s function, Freedman, Lovelace and Namyslowski [ 21 derived 

a set of equations describing composite-particle scattering by using 

the Fadeev equations and by assuming that in the interaction of three 

particles, any two particle subsystem is dominated by bound states and 

resonances. Aaron, Amado and Young [ 31 derived a similar set of 
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linear relativistic three body equations for the scattering of a particle 

from a bound state or correlated pair of others. Both Freedman, Lovelace, 

Namyslowsky and Aaron, Amado, Young combined the isobar idea with 

two and three-body unitarity as suggested by Blankenbecler and Sugar-[ 41. 

The resulting equations are such that the composite particle amplitude 

obeys two and three-body unitarity exactly in the interaction channel. 

The basic mechanisms for thislie in the potential term (which is chosen 

to have a particular three-particle cut) and in the composite particle 

propagator (which is chosen to have the appropriate two-particle and three- 

particle cuts). Let us now discuss this in more detail. 

Two and Three- Body Unitarity - -- 
Structure of the Potential and the Propagator 

For simplicity we consider the case of three spinless, identical 

particles and treat the elastic scattering of one particle from a spinless 

composite state of the other two. 1 51 The composite-particle scattering 

equations have the form (Fig. 4 ) 

T(s) = B(s) + T(s) -r(s) B(s) (1) 

T(s) = B(s) + B(s) T(S) T(s) (2) 

where B(s) is the particle exchange term, T(S) is the composite 

particle propagator and T(s) is the amplitude describing the composite - 

particle scattering. The variable s is the square of the center of mass 

(c. m. ) energy in the reaction channel. 
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To impose the unitarity conditions, we obtain the discontinuity in 

s of T by writing 

B(s-) = B(s-) - B(s+) + T(s+) - BIT (3) 

and 

B(s+) = B(s+) - B(s-) + T(s-) - B(s-)~(s-)T(s-) > (4) 

Using Eqs. 1 and 4 we may write 

T(s-) = B(s-) + [ B(s-) - B(s+)]~(s-)T(s-) 

+ T(s+)~(s-)T(s-) - T(s+)~(s+)B(s+)~(s-)T(s-) . 

From Eqs. 2 and 3 we may write 

T(s-) = B(s-) + [ B(s-) - B(s+)] T(S-)T(s-) 

+ T(s+)T(s-)T(s-) - T(s+)~(s+)B(s+)~(s-)T(s-) . 

(5) 

(6) 

We then find 

T(s+) - T(s-) = T(s+) { T(s+) - ~(s-)} T(s-) 

+{ I + T(s+)T(s+)} { B(s+)-B(s-)} { I+r(s-)T(s-)} . (7) 

Now terms like 

[ B(s+) -B(s-)] + [ B(s+)-B(s-)]s(s-)T(s-) + T&(s+)[ B(s+-B(s-)] 

correspond to cutting external lines, so they vanish. Therefore, we obtain 

T(s+)-T(s-) = T(s+)[ T(s+) - S(S-)] T(s-) 

+ T(s+)T(s+)[ B(s+) - B(s-)]T(s-)T(s-) . (8) 

The composite-particle scattering equations (with momentum labels 
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as in Fig. 5 are 

<p 1 T(s) /q’ = <pi B(s) /q>+L 

(W4 

d4k<p j B(s) 1 k> 

x -r($<k) T(s) lq> (9) 

with s, = (p-k)’ . The discontinuity of T satisfies the relation (Fig. 

6) : 

<pIT(s+)/q> - <p ITb-)lq> 

1 z- 

w4 
I 

d4k <p 1 T(s+)) k > [ T(C$ - -r(o;)l <k 1 T(s-) 19’ 

1 
+- 

(W4 J 
d4k d4k’ ‘p 1 T(s+) 1 k > T(R+) 

x , <k 1 B(s+)) k’> - <k 1 B(s-) / k’> ] -r(ok ,-)<k’ 1 T(s-) 1 q’ * (lo) 

We wantexpressions for the discontinuities of s(s) and B(s) such that 

two and three-body unitarity is satisfied. Unitarity says 

Tfi - Tfit = &,TfnTnit= i 
c 

tinTfn+T m 
n 

where n n 

an = (21T)4 6(4)(Pf -C’qi)K 
d4qi 
4 2ir 6 +(q; 

2 
- mi ) (12) 

i=l ix1 Czv) 

is n-body phase space. Therefore, from two-body and three-body 

unitarity we have (Fig. 7) 

<PIT(s+)(q> -<PIT@-)lq ’ 

i =- 

( w4 

d4k 6+(%-m:) 6+(k2- m2)<p/T(sf)k><klT(s-)/q>(2rr)2 
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+1 
J 

(22 

d4ki d4k2 d4k3 6 (P-ki-k2-k3)(2a)3 6+(kf-m2) 

x 6 ‘(kt-m2) 6 ‘(k3’ -m’)<p 1 T(s+) 1 kik2k3><k1k2k31 

X 1 T(s-) ( s> . (13) 

The first term represents the situation where the composite 

propagates as a stable particle in the intermediate state (elastic bound 

state scattering); the second term represents the situation where the 

composite breaks up in the intermediate state and the same or a 

different composite is formed in the final state. The term < p / T(s) 1 

kfk2k3 > is the production (two-body -three body) amplitude. It has the 

form (Fig. 8 ) 

<p 1 T’(s) 1 klk2k3 ’ = ++ 2 <P 1 T(s) 1 kn ‘S (s,) v(p;) (14) 

where p 
1 
’ = (k2-k3)’ , etc. ; v is the vertex for the dissociation of the 

composite, and S is a propagator which is related to T in a way to be 

demonstrated below. With the definition for <p 1 T(s) 1 kik2k3 > given in 

Eq. 14 , Eq. 13 becomes 

<pIT(s+)jq> - <pIT(s-)jq> 

= 1 
J 

(2 d2 
d4k 5 ‘(ok- mR2) 6 

+ 2 
( k -m’)<pl T(s+) 1 k ><kl T(s-) (q> 

d3kl d3k2 d3k3 6 (4) (P-ki-k2-kg) 6’(k~-m2) E+(kf-m2) 
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3 
2 2 1 

x b+(k x-m)3, 
.c 

‘p 1 T(s+) 1 kn’ S(%+ n) V(Pn2) v(p,2) 

n, m=l 

x St%;) < km )T(s-)lq ’ (15) 

The first term in Eq. 15 obviously contributes to the discontinuity 

of T . In the second term m = n contributes to the discontinuity of 

T > being the direct term corresponding to cutting the propagator 

bubble (Fig. 9). The terms m # n correspond to the exchange of a 

particle between bound states and will contribute to the discontinuity of 

B(s) (Fig. lo). 

For m # n , the second term in Eq. 15 may be written 

i 

-5 (W5 

d4k d4k* d4k” 6 (4)(p-k -k’-k”) 6 +(k2-m2) b+(k “-m’) 

x a+(k” 
2 

-m2) 5 6 ip 1 T(s+) 1 k > S(&) v[ (k”-k’)‘] v[ (k”-k)‘] 

x S(%,-) < k’ 1 T(s-) \q> (46) 

i =- 

(W5 

d4k d4k* 6+(k2-m2) 6+(k”-m2) 6+[ (P-k-k’)‘-m2] 

x <p / T(s+) 1 k > S(ok+) v [ (P-k-2k*)‘] v[ (P-Zk-k ‘)‘I 

x SC%,-)< k’ 1 T(s-) 19 ’ 
. (17) 

Comparing Eq. 17 with the second term of Eq. 10 , we obtain the 

relation 
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T(s+)l<k / B(s+) 1 k’> - <kl B(s-)) k ‘> ] ~(ck 1) 

= iv [ P-k-Zk’)’ ] S(okf)(Zr$ d +(k2-m2)6 +(k’ ‘-m2) 

x 6+[ (P-k-k’)2-m2] S(qc,-)v [ (P-Zk-k’)’ ] . (18) 

For m = n , writing p 
12 = +(kl-k2) . the second term in Eq. 15 

becomes 

1 
(W5 

d4k 6+(k2-m2) <p 1 T(s+) / k >S(ok+)S(c+k/ T(s-) 1 q> 
2(2rr)3 

X d4pi2(2r)’ v2(p,2’) 6 +(kf-m2) 6 ‘(kz2-m”) . (19) 

Equations t9, 15 and 10 yield 

T( %+) - ~(qc-) = i(2 T)’ 6 +(k’-m2)6 +(s2-mR2) 

+ i6~~~2~m2) S(%‘)S(x-) ~d4p12v2(p122)6+(p12-m2)6+(p22-m2) (20) 
lT 

which together with Eq. 18 suggests the identification 

T(S) = (2n)6+(k2-m2)S(Q . 

Finally we have 

<k 1 B(s+) ( k’> - <k ) B(s-) 1 k’ > 

(21) 

= iv[ (P-k-Zk*)‘] 2n a+[ (P-k-k’)‘-m2] v[ (P-2k-k*)‘] (22) 
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with the constraints k2 = m’, k ’ 
2 2 

=m. For the composite particle 

propagator we get 

St%+) - SC%-) = 2rr i 6+(%2-mR2) 

+ s(~+KqJ 
2(21T)4 

i d4p12v2(4pi22)(2rr)26 +(pi2-m2)6 +(P2’-m2) . (23) 

The potential term B is obtained from a dispersion relation in s (no 

cut contribution from the vertex functions) . We easily find in the 

s-channel center of mass 

v[ (I’-k-2k’) 
2 

]{w +w 
<k 1 B(s) ( k’ > = k k’+Wk+k’ 

} v[ (P-2k-k”)2] 

Wk+k’ I bk+0kC+Wk+kC)2rsl 
(24) 

where w k = ($‘+rn’)+ . 

The composite particle propagator is found with greater difficulty 

and its calculation is done in the Appendix. Its form for a spinless 

composite formed from two spinless, equal mass particles (with vertex 

functions set, for simplicity, equal to coupling constants) is 

i 
S(al = -D(o) (A-1) 

2 
D(ol = cr-mR2 +g 

4m2-, 2 

32~’ i i 

1 

0 (A-9) 

m 
R 

2 = mass of the composite. 

So our final equation is 

<p/T(s)/q> = <P )R(s)/q> +1 

(2d4 
d4k<pI B(s)) k >T(aJ<k/ T(s) IS> 

(25) 

with <p 1 B(s) 1 q > given by Eq. 24 and T (cQ = (271) 6 +(k2-m’)S(Q 
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with S(s) given by Eqs.A-1 and A-9 

III. DERIVATION OF THE “MULTIPERIPHERAL” EQUATION 

We now formulate our cross channel multiperipheral equation by 

using a spectral representation in momentum transfer for the composite- 

particle amplitude. [ 61 We begin with the equation derived in Sec. II 

1 
T(P> q. s) = B(P, q. s) + - 

Gd4 
I d4kB(p,k,s)rQ T(k,q,s) . (26) 

Noting that T (uk ) = 2~ 6 +(k2-m2) S(ok), we have 

1 
T(P, q, s) = B(P, q, s) = - 

d3k 1 

w3 
- - B(p, k, s)T(k, q. s) . 
2~ k DC%) 

(27) 

Making the angular integration explicit, we find 

1 
T(P, q, s) = B(P, q. s) + - 

k2dk 

w3 J 2~ kWq,) 
ay( B(p, k, s)T(k, q. s) (28) 

Again 

B(P, q. s) = 2rg2 
ds’ 

rs 6 + [ (P’-p-q)‘-m2 I (22) 

which leads to Eq. 28 being written as 

T(P> q. s) = B(P, q. s) + 

x 6 + [ (P’ -p-k)‘-m2] T(k, q. s) . 

Implicit in the dependence of T on momentum variables is a 

dependence on momentum transfer t , so we may 

(29) 



-16- NAL-Pub-74/44-THY 

write T(p,q, s) = T(p,q,s,t) . We now use a spectral representation 

in momentum transfer for T(p, q, s, t) [ 61 , 

T(p,q,s,t) = B(p,q,s,t) +; (30) 

This is consistent with Eq. 29 if A(p, q, s, t) tends to zero for t - m . 

Otherwise, subtractions have to be made; this is inconsequential because 

we are interested in A , which is the discontinuity of T across the cut 

in t . 

Introducing Eq. 30 into Eq. 29 we obtain 

6 +[ (P’ -p-W2-m2 ] Bk q. s, t2) 

J dt; 
i 7 

2 -t2 
A(q,ksJ;)* 

(31) 

The 6 - function may be written (since the s’ integration is performed 

in the s’ center of mass). 

6 [ (~‘-p-k)~-rn~] = 6[ ( ~-wp-~k)2-(p2+k2+m2)-2pkZ1 ] 

1 
(m-u -wk)‘- (p2+k2+m2) 

=2pk6 2~PiS -Z 1 1 . 

(32) 
We use the relations 
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=2 
= zz * f jz ~~COS~~ , 

z2-2; = 7x1 + L2 %I? cos 4-z; 

=a+bcos$ . 

a=zz -2’ 
1 2 

and 

we find 

(34) 

(35) 

(36) 

(37) 

i 
a&= 

2n 

# +z2+z 
1 

;-2zz1z; -1)” 
(38) 

(2 2 

With this we obtain for A(p, q. s, t). the discontinuity of T across 

the t cut: 

A(P. q. s, t) = disct P (P. q. s, t) t m 
2 , 

+c J k’dk 
2wkD’cQ 2pk*2kq o dt2 so 

ds’ 
TT J J- s’-s 

Akq.s.t2’) 
X 

K&,&Z2 ‘) 
(39) 

where 
c ‘2 

K(z, 2, z2 ) = [ z2+E2+z2 
. 

-1-2z2z2 ] (40) 
, 

and z 
2 

is linearly related to t ; [71 * Also 
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;= 
(&-‘-IL p-wk)2-(p2+k2+m2) 

W 
(41) 

The expression disct 8 (p, q. s, t) represents the discontinuity of the 

expression in Eq. 39 with the term B. 

At this point we take the limit t-m , t2@-m . If we assume in doing 

this that A(k, q, s, t2 ) converges sufficiently fast when k-a, we can neglect 
* 

p, k, q and masses comparedtto t and ti . We then obtain 

A@, q, s.t) = 

(42) 

. 
A&, q. s. t2 ) 

X 

2k2t &-?&+$ 

[ k2 
k 1 . 

t2 
* 

with x =t ; ko=px(&Z2-I) . (43) 

Due to the dilatation invariance of the equation under the transformation 
. 8 

t2 
-9 ct 

2 
and t - ct , A (p, q, s. t) has the form tO$(p, q, s) and we 

obtain o(p, q. s) = 

X $(k, q, 5) 

* 

The integral Eq. 44 is Fredholm, with kernel 

(44) 

1 
Wa,pskq) = 2w k-,(s) 

m 
ds ’ 

7s 

sO 
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fj 
[ 

I+ 2 X2 -22 xz 

X 
k2 k 1 

xz 1 
1 2 (45) 

If y = E x the x integration becomes 

rU+i 
J 
7 

k 

P 
yffdy 

o [ *+y2-2y$ 

where 

y = one of the zeros of the denominator = z + Q-1 . (46) 

Consider the integral 

using 

and 

J 
y = e-t Z = cash P 

p1 = $ Q,r ~0s PI 

(P > 0, a’ -1) , 

We find 1 
xadx 

Defining 

f(P, % s) = P Cl,+1 4(p.q.s) I 

(47) 

(48) 

(49) 

(50) 

(51) 
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we obtain 

1 g2 m 
-ok)2-(p2+k2+m2) 

f(p,q,s) =-- 
rr2d7 0 2pk 1 

x f(k,q,s) . 

The kernel of the integral equation is now: 

(52) 

1 g2 
K(LY’ ” k’ ‘) = 2~~ 2w kD(ok) 

Equation 52 is an eigenvalue equation of the form 

f=Kf 
* (54) 

This is the same form as the homogeneous equation for a bound state in 

the Bethe Salpeter problem. The condition for a solution is that 

det(l-Km) = 0 

If we call 
det(i-KU) = D(a, g2, s) , 

to solve Eq. 52 we have the Fredholm eigenvalue condition 

with D given by [ 61 

D(LY, g2> s) = 0 . 

* DC@, g2, s) = 1+ c (-g2/2ad” 
1 

. * * dk 
n! n 

n=l 

(55) 

(56) 

(57) 
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X @?a, ki a k+ s) K(o, ki > k,;s) 

KC@, k,> kid K (~9 kn> k,;s) 

This gives an implicit relation for the trajectory function 

a = cY(g2,s) . 

(58) 

cy : 

(59) 

IV. ALTERNATIVE DERIVATION OF THE “MULTIPERIPHERAL” 
EQUATION 

In this section we derive the cross channel equation in terms of 

invariant variables. Again, we begin with the equation derived in 

Sec. II. 

1 
T(p,q,s) = B(p,q, s) +- 

cm4 
I d4k B(p, k, s) 7 (%)T(k> 4. s) (26) 

Or 

1 
T(p, q. s) = B(P, q. s) + - 

M3 
I 

d4k B(P, k, s) 
Wqc) 

6+(k2-m2)T(k, q. s) . (60) 

To proceed we must compute the kernel resulting from the Jacobian 

of the transformation from momentum variables to invariant variables. 

Writing B(p, k, s) in terms of its dispersion integral, the second term 

in Eq. 60 becomes 

ss 8+[ (PC-p-k)2-m2 ] 6 +(k2-m2) T(k, q. s) . 

If we call m2 = -u2 
. , 

and define two new invariants u1 and t’ as 

follows 
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du; dt’ 6[ (P-k)‘+u;] 6[ (p-q-k)2-t ‘I = 1 > 

the Jacobian of the transformation to invariant variables is then 

d4k 6+[ (P-p-k)2-m2] 5[ (P-k)‘+ui’]&( k’+u;] 6[ (P-q-k)‘-t’j 

0 (H) 
=zT- ’ 

where 

and 

cu;-+ 
[i 

2 H= - 
2 - 2 x 

3 

t’ 
x=- 

,T a t = (S-Pj2 

T = (P -Peqbp)2 

PI = - [ w-(pI2+p)l 2 

(61) 

(62) 

(63) 

(64) 

q2 = -[B*-V2-P)] 2 . 

If, as in Sec. III, we use a spectral representation for T(p, q, s, t) = 

T(P, q. s) 

J 
co T(p,q,s,t) = W,q,s,t) ++ 

t0 

Nyy,t’) dt. 
(30) 

and take the absorptive part of T in t , we obtain 



-23- NAL-Pub-74/44-THY 

A(u1,u2, s,t) = disctP(ui,u2,s,t) 

+g idts j &Is z + A(u;,u;,s,t’) , (65) 

For high t , we obtain CT-+ t) 
lim 

t -rm 

g2 

1 m 
J 5 du; J ds ’ A b;, u; s.tx) 

=- 
(4 o dx u.. D(-uf’) s’-s 47 

0 (H) . (66) 

1 
min 

Due to the dilatation invariance of the kernel under the transformation 

t -+ ct , t’+ ct’, VE may write A(s, t,u1,u2) = t u(s)$(s, ul, u2) ; 

c?(s) = L ; the integral equation becomes 

2 
L$b,UiJU2) = % 

m 
du; 

J 

ds’ 
D(-I+‘) S.-S 

“min 

m 
0 (H) 

(67) 

Again the Jacobian may be written 

(68) 

where 

g= -s(l-x) 
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$ = q- .A 
TX -1-x 

5 =u2*-11zx-~ 

or 

X2 
H = T [ (-(~~-~)2-2s(~*~2)-s2] 

-2 [ -(u;-u; )(‘rl-~2)-s(~~+f12)-S(u~‘+UZI )-2p2s-s2] 

+a [ * -(u 1 +2-2s(u;+ u; J-s21 

= -@x2 + 2px - cz’ 

where 

e = ‘vi-‘72’ 2 + 2s(yq + s2 

= “‘“J-uiJ-“2’ 

, 
(Y’= (u 

1 
-u; )2 + 2stu; +u; ) + s2 

(69) 

(70) 

(71) 

= A(s, -u;,-u;) 

p = cu;- u; )( ‘71-rj2) +s(r71+n;!)+s(u;+u~)+2~2s + s2 * 

If we use the integral representation of the Legendre function 

of the second kind Q, (z) [ 81 
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Qp I- -j&-l = 6 [F)’ \lx’ dx;ja>$:;;;l (72) 

0 

Valid when Re 1 > -1 , Eq. 72 becomes 

$b,Ul,U2) = $ 1 D(5) 1% @)‘& Q, [&I (73) 

. 
x HSJU u’) . 

1’2 

Remembering that uf = -m2, 
2 ’ 

u2 = -M , u 
2 

= -m2, we have 

-M2) = < J$) JE ()$i’& $$-&] . (74) 

The kernel of the equation (which is a Fredholm equation) is 

(75) 

V. DISCUSSION 

We began with a linear, relativistic, three-body Bethe-Salpeter 

equation describing scattering in the s channel between a spinless 

particle and a spinless composite. This equation has the virtue of 

satisfying two and three body unitarity exactly in the s-channel. The 

mechanism for this is the particular form chosen for the Born term and the 
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composite-particle propagator, using the Blankenbecler-Sugar prescription. 

[41. 

We perform a continuation of our three body Bethe-Salpeter 

equation to the cross channel by using a spectral representation in 

momentum transfer (t) for the composite particle scattering amplitude. 

By taking the t discontinuity of the equation and going to high t , we 

obtain a homogeneous integral equation for the absorptive part, which 

is reminiscent of multiperipheral [ 9,101 models for high energy in 

the t channel. In particular, the topology of the equation is similar 

to that of multiperipheral models and we obtain a Reggeized solution 

t a(s) b(PJ q.s) . 

This not surprising since a connection between the Bethe-Salpeter 

equation in the ladder approximation and the $3 multiperipheral model 

has been discussed by several authors [ 10,6] . 

When the t 4s) is factored out, we are left with an eigenvalue 

equation for a(s), and $(p, q, s) . However, this integral equation has 

two peculiarities due to the particular form of two and three body 

unitarity chosen: 1) an integration involving s (the s’ integration 

from the Born exchange term), so that the Born term has the correct 

three particle cut in s , 2) a more complicated analytic structure in 
. 

k (uf ) due to the form of the composite particle propagator, so that 
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the propagator has the correct two and three particle cuts in s . 

The original composite-particle equation and the amplitude 

constructed from it can be used to investigate the following things. 

First, we can extract the behavior of the leading Regge singularity via a 

determinental solution of the equation and study the effect of the extra 

unitarity on the small and large s behavior of the output trajectory. 

This has been done and will appear in a subsequent paper. Second, we 

can attach a propagator and vertex function for the decay of the final 

state composite to form a production amplitude (two to three scattering). 

Finally, by attaching a propagator and a vertex function for the formation 

of the initial state composite, we can construct an amplitude describing 

three body scattering. This amplitude can be used to calculate, via 

Muelleros Optical Theorem, a single particle inclusive distribution. 

We are investigating whether a triple Regge limit exists for this problem. 

The solution of our “multiperipheral” equation may be used to 

construct an amplitude describing the production of four particles at 

high energy (via an isobar mechanism). We can then study the effect 

of the extra cross channel unitarity on the high energy behavior, t he 

behavior in rapidity and final state correlations of the produced 

particles, If we Reggeize the composites we may study an amplitude 

with Reggeon - Reggeon - particle vertices where one of the Reggeons 

carries the effect of more unitarity into the vertex than the other 

(since Reggeizing the composites involves just two body unitarity in 
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keeping with the structure of the original model). There is also a 

possibility that two Reggeon cut discontinuities may be studied using 

this amplitude. 

A presumption in all of this has been that a path of analytic 

continuation exists from the s-channel to the t-channel. Such a 

continuation could possi.hly be affected by the presence of anomalous 

thresholds. We are investigating this by an s-channel partial wave 

analysis of the original composite-particle Bethe-Salpeter equation. 

Authoress wishes to thank Professor J. E. Young (of Physics 

Department, M. I. T. ) for suggesting this line of investigation. 
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APPENDIX: PROPAGATOR CALCULATION 

Beginning with the expression in Bq. 23 for the composite particle 

propagator, S(ij , Aaron, Amado and Young derive the following 

equation for the inverse propagator 

D(cj = o- rni 
[ 1 ‘zI$)Jcd k (o~l~(i~m~)2] 

where 

1 
S(d = -D(d (A-1) 

W-2) 

Cr = 4(k2+m2) = 4w 
2 

k (A-3) 

for a composite, of mass rni , formed from equal mass spinless 

particles of mass m2 . 

Replacing the vertex function with the coupling constant g , we 

have 

D(o) = (o-mR2) 1 + 
[ (1~2X~fa k(crf~f-m~)2] 

Concentrating on the integral 

Jci ,(o<Ftm,i,L = J (oc(J/2< 2)2 ’ 

(A-4) 

(A-5) 
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we use 

2 
= k2+m2 ; k = (w 2 21 

w -m )’ 

dl!d =$$ 

to cast the integral in the form 

03 
2 2L 

dw (w -m )’ 

m (a2-w 2)(b2-o 2)2 

(A-6) 

(A-7) 

where 

a2 = o/4 

b2 = mR2/4 
(A-8) 

Using contour integration and residue calculus we obtain for the inverse 

propagator 

ig 2 (m-4m2)+ 
D(O) = o-m: + - - 

32rr2 0.2 

(A-9) 
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